Степени при сложении чисел
Содержание
- 1 Конспект
- 2 При сложении степеней показатели
- 2.1 Степень с целым и дробным показателем
- 2.2 Выполнить действия со степенями самостоятельно, а затем посмотреть решения
- 2.3 Степени с одинаковым основанием при сложении
- 2.4 Свойства степени с натуральным показателем
- 2.5 Степени с одинаковым показателем при сложении
- 2.6 Степени с одинаковым показателем сложение
- 2.7 Применение степеней и их свойств
- 2.8 Как умножить степени с разными основаниями и показателями?
- 3 Свойства степеней с примерами
- 4 Свойства степени
- 5 Действия со степенями: правила вычисления степеней с разными основаниями или натуральными показателями по математике и порядок этого
- 6 Сложение и вычитание степеней ⬅️
- 6.1 Таблица степеней
- 6.2 Свойства степеней: когда складывать, а когда вычитать
- 6.3 Свойство 1: произведение степеней
- 6.4 Свойство 2: частное степеней
- 6.5 Свойство 3: возведение степени в квадрат
- 6.6 Свойство 4: степень возведения
- 6.7 Свойство 5: степень частного
- 6.8 Сложение и вычитание степеней
- 6.9 Сложение степеней с разными показателями
- 6.10 Сложение степеней с разными основаниями
- 6.11 Как складывать числа с одинаковыми степенями
- 6.12 Вычитание степеней с одинаковым основанием
- 6.13 Вычитание степеней с разными основаниями
- 6.14 Вычитание чисел с одинаковыми степенями
- 7 Сложение, вычитание, умножение, и деление степеней
Конспект
Ключевые слова конспекта: степень с натуральным показателем, основание степени, показатель степени, возведение в степень, дисперсия, умножение и деление степеней, свойства степеней.
Произведение 7 • 7 • 7 • 7 • 7 записывают короче: 75. Выражение вида 75 называют пятой степенью числа 7 (читают: «семь в пятой степени»). В записи 75 число 7, которое означает повторяющийся множитель, называют основанием степени, а число 5, показывающее, сколько раз этот множитель повторяется, называют показателем степени.
Умножим 75 на 73:
75 • 73 = (7 • 7 • 7 • 7 • 7) • (7 • 7 • 7) = 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 = 78.
Показатель степени увеличился на 3. Естественно считать, что 7 = 71. Вообще считают, что первой степенью числа является само число. Например, 181 = 18, 1041 = 104.
Степень с натуральным показателем
✅ Определение. Степенью числа а с натуральным показателем n, большим 1, называют выражение аn, равное произведению n множителей, каждый из которых равен а.
Степенью числа а с показателем 1 называют выражение а1, равное а.
По определению
Запись аn читается так: «а в степени n» или «n-я (энная) степень числа а». Для второй и третьей степеней числа используют специальные названия: вторую степень числа называют квадратом, а третью степень — кубом.
Возведение в степень
Нахождение n-й степени числа а называют возведением в n-ю степень.
Пример 1. Возведём число -3 в четвёртую и пятую степени:
(-3)4 = (-3) • (-3) • (-3) • (-3) = 81;
(-3)5 = (-3) • (-3) • (-3) • (-3) • (-3) = -243.
Из свойств умножения следует, что:
- при возведении нуля в любую степень получается нуль;
- при возведении положительного числа в любую степень получается положительное число;
- при возведении отрицательного числа в степень с чётным показателем получается положительное число, а при возведении отрицательного числа в степень с нечётным показателем — отрицательное число.
Пример 2. Возведём число 6,1 в седьмую степень, воспользовавшись калькулятором. Для этого надо выполнить умножение:
6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1.
Калькулятор позволяет выполнять возведение в степень проще, не повторяя основание степени и знак умножения.
Для того чтобы возвести число 6,1 в седьмую степень, достаточно ввести число 6,1, нажать клавишу УМНОЖИТЬ и шесть раз нажать клавишу РАВНО . Получим, что 6,17 = 314274,28.
При вычислении значений числовых выражений, не содержащих скобки, принят следующий порядок действий: сначала выполняют возведение в степень, затем умножение и деление, далее сложение и вычитание.
Пример 3. Найдём значение выражения -62 + 64 : (-2)5. Последовательно находим:1) 62 = 36;
2) (–2)5 = –32;
3) 64 : (–32) = –2;
4) –36 + (–2) = –38.
Пример 4. Найдём множество значений выражения 5 • (–1)n + 1 + 2, где n ∈ N.
Если n — нечётное число, то (-1)n + 1 = 1; тогда 5 • (-1)n + 1 + 2 = 5 • 1 + 2 = 7.
Если n — чётное число, то (-1)n + 1 = -1; тогда 5 • (-1)n + 1 + 2 = 5 • (-1) + 2 = -5 + 2 = -3.
Множество значений данного выражения: {-3; 7}.
В рассмотренном примере было указано, что n ∈ N. Условимся в дальнейшем такое указание опускать и считать, что если показатель степени содержит переменную, то значениями этой переменной являются натуральные числа.
Дисперсия
Степень с натуральным показателем широко используется в естествознании для вычисления различных характеристик. Например, в статистике, для того чтобы узнать, как числа некоторой выборки расположены по отношению к среднему арифметическому этой выборки, используют отклонения, их квадраты и среднее арифметическое квадратов отклонений — дисперсию.
Пример 5. Дана выборка: 4, 6, 7, 8, 10. Среднее арифметическое этой выборки равно 7. Тогда отклонения вариант данной выборки от среднего арифметического равны: 4 – 7 = –3, 6 – 7 = –1, 7 – 7 = 0,8 – 7 = 1, 10 – 7 = 3, т. е. мы получили ещё один набор чисел — отклонения каждой варианты выборки от среднего арифметического.
По новой выборке (–3; –1; 0; 1; 3) можно судить о том, насколько близки к среднему арифметическому числа исходного набора. Но поскольку сумма отклонений равна нулю, то и среднее арифметическое этой новой выборки также равно нулю.
Поэтому для дальнейших исследований исходного набора находят квадраты отклонений и их среднее арифметическое
Полученное число и есть дисперсия исходной выборки.
Умножение степеней
Представим произведение степеней а5 и а2 в виде степени:
а5 • а2 = (а • а • а • а • а) • (а • а) = а • а • а • а • а • а • а = а7.
Мы получили степень с тем, же основанием и показателем, равным сумме показателей множителей. Подмеченное свойство выполняется для произведения любых двух степеней с одинаковыми основаниями.
Если а — произвольное число, m и n — любые натуральные числа, то аm • аn = аm+ n
Докажем это. Из определения степени и свойств умножения следует, что
Доказанное свойство называется основным свойством степени. Оно распространяется на произведение трёх и более степеней. Это нетрудно показать с помощью таких же рассуждений.
Из основного свойства степени следует правило:
- чтобы перемножить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели степеней сложить.
Деление степеней
Представим теперь в виде степени частное степеней а8 и а3, где а ≠ 0. Так как а3 • а5 = а8, то по определению частного а8 : а3 = а5.
Мы получили степень с тем же основанием и показателем, равным разности показателей делимого и делителя. Такое свойство выполняется для частного любых степеней с одинаковыми основаниями, не равными нулю, у которых показатель делимого больше показателя делителя.
Если а — произвольное число, не равное нулю, m и n — любые натуральные числа, причём m > n, то аm : аn = аm — n, где а ≠ 0, m ≥ n
Докажем это. Умножим аm — n на аn, используя основное свойство степени:
am – n • an = a(m – n) + n = am – n + n = am
Из доказанного свойства следует правило:
- чтобы выполнить деление степеней с одинаковыми основаниями, надо основание оставить тем же, а из показателя делимого вычесть показатель делителя.
Степень с нулевым показателем
Мы рассматривали степени с натуральными показателями. Введём теперь понятие степени с нулевым показателем.
✅ Определение. Степенью числа а, где а ≠ 0, с нулевым показателем называется выражение а0, равное 1.
Например, 50 = 1; (–6,3)0 = 1. Выражение 00 не имеет смысла.
Это конспект по математике на тему «Степени. Свойства степеней». Выберите дальнейшие действия:
Источник: https://uchitel.pro/%D1%81%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%B8-%D1%81%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0-%D1%81%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%B5%D0%B9/
При сложении степеней показатели
Степени с одинаковым показателем при сложении
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Степень с целым и дробным показателем
Имеют место следующие тождества:
1) ;
2) ;
3) .
Выполнить действия со степенями самостоятельно, а затем посмотреть решения
Пример 2. Найти значение выражения
.
Пример 3. Найти значение выражения
.
Степени с одинаковым основанием при сложении
Важно При .
9. Обратная задача — внесение множителя под знак корня. Например,
10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.
а) , так как .
Например, .
б)
Например,
в)
и т.
д.
11. Применение тождеств сокращённого умножения к действиям с арифметическими корнями:
1) ;
2) ;
3)
К началу страницы
Другие темы в блоке «Школьная математика»
Действия с дробями
Решение квадратных уравнений
Решение дробных уравнений с преобразованием в квадратное уравнение
Свойства степени с натуральным показателем
1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:
.
Например, .
2.
Степени с одинаковым показателем при сложении
Уменьшите показатели степеней в $\frac{6×6}{3×5}$. Ответ: $\frac{2x}{1}$ или 2x.
3. Уменьшите показатели степеней a2/a3 и a-3/a-4 и приведите к общему знаменателю. a2.a-4 есть a-2 первый числитель. a3.a-3 есть a0 = 1, второй числитель. a3.a-4 есть a-1, общий числитель. После упрощения: a-2/a-1 и 1/a-1.
4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.
Ответ: 2a3/5a7 и 5a5/5a7 или 2a3/5a2 и 5/5a2.
5. Умножьте (a3 + b)/b4 на (a — b)/3.
6. Умножьте (a5 + 1)/x2 на (b2 — 1)/(x + a).
7. Умножьте b4/a-2 на h-3/x и an/y-3.
8. Разделите a4/y3 на a3/y2.
Ответ: a/y.
9.
Степени в математике имеют отдельное, важное место. С их помощью решаются показательные уравнения и неравенства, а так же степенями часто усложняют уравнения и примеры, относящиеся к другим разделам математики. Степени помогают избежать больших и долгих расчетов, степени легче сокращать и вычислять.
Но для работы с большими степенями, либо со степенями больших чисел, нужно знать не только свойства степени, а грамотно работать и с основаниями, уметь их разложить, чтобы облегчить себе задачу.
Для удобства следует знать еще и значение чисел, возведенных в степень.
Это сократит ваше время при решении, исключив необходимость долгих вычислений.
Особую роль понятие степени играет в логарифмах. Так как логарифм, по сути своей, и есть степень числа.
Формулы сокращенного умножения — еще один пример использования степеней.
Степени с одинаковым показателем сложение
То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).
Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 108
Каждое число большее 10 можно записать в виде: а · 10n , где 1 < a < 10 и n – натуральное число. Такая запись называется стандартным видом числа.
Например: 4578 = 4,578 · 103 ;
103000 = 1,03 · 105.
Свойства степени с натуральным показателем:
1.
Это свойство очень полезно в случаях, если корень из числа не извлекается.
10-е свойство.
(√а)2 = а
Это свойство работает не только с квадратным корнем и второй степенью. Если степень корня и степень, в которую возводят этот корень, совпадают, то ответом будет подкоренное выражение.
11-е свойство.
n √an = a
Это свойство нужно уметь вовремя увидеть при решении, чтобы избавить себя от огромных вычислений.
12-е свойство.
am/n = n √am
Каждое из этих свойств не раз встретится вам в заданиях, оно может быть дано в чистом виде, а может требовать некоторых преобразований и применения других формул. Поэтому для правильного решения мало знать только свойства, нужно практиковаться и подключать остальные математические знания.
Применение степеней и их свойств
Они активно применяются в алгебре и геометрии.
Теперь получим:
В данном примере были использованы первые четыре свойства степени с натуральным показателем.
Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения производной параметрически заданной функции и производной функции, заданной неявно.
Нет времени вникать в решение? Можно заказать работу!
Как умножить степени с разными основаниями и показателями?
Если , то (правило возведения корня в степень).
5.
Внимание Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7. Все указанные выше формулы часто применяются в обратном порядке (т.
е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня.
Выражение примет вид: a5b5y3.
Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.
Так, a2.a3 = aa.aaa = aaaaa = a5.
Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.Так, an.am = am+n.
Для an, a берётся как множитель столько раз, сколько равна степень n;
И am, берётся как множитель столько раз, сколько равна степень m;
Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.Так, a2.a6 = a2+6 = a8.
Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).
2. Если , то (правило извлечения корня из дроби).
3. Если , то (правило извлечения корня из корня).
4.
Если , то (правило возведения корня в степень).
5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.
6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.
7.
Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:
(правило умножения корней),
(правило деления корней),
.
8. Правило вынесения множителя из-под знака корня. При .
9.
Source: urist-consultant.ru
Источник: https://kak.manesu.com/pri-slozhenii-stepenej-pokazateli/
Свойства степеней с примерами
Что значит возвести число a в степень n? Это значит, что нужно перемножить это число само на себя n-ное количество раз. Например, число 2, возведенное в степень три, будет выглядеть, как 2*2*2 и равняться 8-ми. И у этих степеней есть свои свойства.
источник: Яндекс
Свойства степеней с натуральным показателем
- Основное свойство степени, или свойство произведения степеней применяется при умножении 2х степеней m и n,которые имеют одинаковое основание a. Данное свойство может быть применимо и к произведению трех и более степеней. То есть, если мы захотим, например, возвести число 5 в степень 2 и умножить это на число 5 в степени 6, то нам нужно будет просто сложить степени, и мы получим 5 в степени 8.
am⋅an=a(m+n)
Пример: 52⋅56=58
- Свойство частного степеней применяется при делении степеней m и n с одинаковым основанием а. В результате основание остается таким же, а из показателя степени в числителе вычитается степень в знаменателе. Возьмем, к примеру, число 15 в девятой степени и поделим его на 15 в третей степени. Чтобы не делать долгих вычислений, воспользуемся свойством частного и вычтем из степени 9 степень 3, и мы получим 15 в шестой степени.
am:an=a(m−n)
Пример: 159:153=156
- Свойство возведения степени в степень предполагает перемножение степеней, при этом основание остается прежним. Здесь все просто и логично: у нас есть некое число а возведенное в степень 4, и все это нам нужно возвести еще и в третью степень. Пользуясь свойством, мы получаем а в двенадцатой степени.
(am)n=a(m⋅n)
Пример: (a4)3=a12
Реклама Не каждый студент может себе позволить за семестр в ВУЗе отдать100 000 ₽. Но круто, что естьгрантына учебу.Грант-на-вуз.рф–этовозможность учиться на желанной специальности.
По ссылкекаждый получит бонус от300 ₽до100 000 ₽–грант-на-вуз.рф
- При применении свойства степени произведения, каждый множитель возводится в степень, а полученные результаты перемножаются между собой. Также это свойство можно применять и справа налево.
(a · b)n = an · bn
Пример: (3 · 4)5=35 · 45
- Применяя свойство частного в натуральной степени, и делимое и делитель возводят в степень, а полученный числитель делят на знаменатель.
(a : b)n = an : bn
Пример: (2 : 7)6=26 : 76
- Свойства сравнения степени с нулем:
- если a>0, то при любом натуральном n, an>0. Возьмем а равное 6 и n равную натуральному числу 2, следовательно, 6 в степени 2 будет больше нуля;
- при a=0, an=0;
- если a0. Например, а= 3, m=1, делаем из степени четное число (умножаем 2 на 1). Следуя этому свойству, получаем, что 3 в степени 2 больше нуля;
- если a 0.
Степень с отрицательным показателем
Если нам нужно возвести число а в отрицательную степень n, то мы делим 1 на число в той же степени, только положительной. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени. Другими словами, при отрицательной степени выражение переворачивается.
источник: Яндекс
Свойства степеней с целыми показателями
Тут все просто: для степеней с положительными целыми показателями свойства будут такими же ка вышеперечисленные, так как эти показатели будут являться натуральными. Эти же свойства применяются и для отрицательных и равных нулю показателей степеней. Одно важное замечание: основание не должно ровняться 0.
Реклама Напоминаем про сервисгрант-на-вуз.рф. Не упусти свой шанс изучать то, что тебе нравится. Ну или просто сэкономить на учебе. Ты точно получишьот300 ₽до100 000 ₽,перейдя по ссылкегрант-на-вуз.рф!
Свойства степеней с рациональными и иррациональными показателями
Они будут такими же, как и свойства для степеней с целыми показателями. Но здесь должно соблюдаться одно правило: основания таких степеней должно быть больше нуля.
Спасибо, что прочитали статью. Не забывайте про подписку на канал, а также рекомендую почитать канал наших друзей:
https://zen.yandex.ru/fgbnuac— последние научные достижения и лучшие образовательные практики.Хорошего дня и не болейте.
Источник: https://zen.yandex.ru/media/studystudent/svoistva-stepenei-s-primerami-5ea2ce380157077c4ffa9fb1
Свойства степени
Что такое степень числа Свойства степени Возведение в степень дроби
Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.
Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.
Свойство № 1
Произведение степеней
Запомните!
При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n, где «a» — любое число, а «m», «n» — любые натуральные числа.
Данное свойство степеней также действует на произведение трёх и более степеней.
Примеры.
- Упростить выражение. b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
- Представить в виде степени. 615 · 36 = 615 · 62 = 615 · 62 = 617
- Представить в виде степени. (0,8)3 · (0,8)12 = (0,8)3 + 12 = (0,8)15
Важно!
Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями. Оно не относится к их сложению.
Нельзя заменять сумму (33 + 32) на 35. Это понятно, если
посчитать (33 + 32) = (27 + 9) = 36 , а 35 = 243
Свойство № 2
Частное степеней
Запомните!
При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.
= am − n, где «a» — любое число, не равное нулю, а «m», «n» — любые натуральные числа такие, что «m > n».
Примеры.
- Записать частное в виде степени (2b)5 : (2b)3 = (2b)5 − 3 = (2b)2
- Вычислить. = 113 − 2 · 4 2 − 1 = 11 · 4 = 44
- Пример. Решить уравнение. Используем свойство частного степеней. 38 : t = 34t = 38 : 34t = 38 − 4t = 34 Ответ: t = 34 = 81
Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.
- Пример. Упростить выражение. 45m + 6 · 4m + 2 : 44m + 3 = 45m + 6 + m + 2 : 44m + 3 = 46m + 8 − 4m − 3 = 42m + 5
- Пример. Найти значение выражения, используя свойства степени. = = = = = 211 − 5 = 2 6 = 64
Важно!
Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.
Нельзя заменять разность (43 −42) на 41. Это понятно, если посчитать (43 −42) = (64 − 16) = 48, а 41 = 4
Будьте внимательны!
Запомните!
При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.
(an)m = an · m, где «a» — любое число, а «m», «n» — любые натуральные числа.
- Пример. (a4)6 = a4 · 6 = a24
- Пример. Представить 320 в виде степени с основанием 32.По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:
Запомните!
При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.
(a · b)n = an · bn, где «a», «b» — любые рациональные числа; «n» — любое натуральное число.
- Пример 1. (6 · a2 · b3 · c )2 = 62 · a2 · 2 · b3 · 2 · с 1 · 2 = 36 a4 · b6 · с 2
- Пример 2. (−x2 · y)6 = ( (−1)6 · x2 · 6 · y1 · 6) = x12 · y6
Важно!
Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.
(an · bn)= (a · b) n
То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.
- Пример. Вычислить. 24 · 54 = (2 · 5)4 = 104 = 10 000
- Пример. Вычислить. 0,516 · 216 = (0,5 · 2)16 = 1
В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.
Например, 45 · 32 = 43 · 42 · 32 = 43 · (4 · 3)2 = 64 · 122 = 64 · 144 = 9216
Пример возведения в степень десятичной дроби.
421 · (−0,25)20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25))20 = 4 · (−1)20 = 4 · 1 = 4 Запомните!
Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
(a : b)n = an : bn, где «a», «b» — любые рациональные числа, b ≠ 0, n — любое натуральное число.
- Пример. Представить выражение в виде частного степеней. (5 : 3)12 = 512 : 312
Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.
Источник: http://math-prosto.ru/?page=pages%2Fstepeni%2Fstepeni2.php
Действия со степенями: правила вычисления степеней с разными основаниями или натуральными показателями по математике и порядок этого
Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.
В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.
Степень, свойства и действия со степенями, сложение, умножение, деление отрицательных степеней, степень с натуральным показателем, правила и формулы
Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.
Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.
Что такое степень числа
Что же подразумевают под выражением «возвести число в степень»?
Степенью n числа а является произведение множителей величиной а n-раз подряд.
Математически это выглядит следующим образом: an = a * a * a * …an.
Причем, левая часть уравнения будет читаться, как a в степ. n.
Например:
- 23 = 2 в третьей степ. = 2 * 2 * 2 = 8,
- 42 = 4 в степ. два = 4 * 4 = 16,
- 54 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625,
- 105 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000,
- 104 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.
Ниже будет представлена таблица квадратов и кубов от 1 до 10.
Таблица степеней от 1 до 10
Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».
Ч-ло | 2-ая ст-нь | 3-я ст-нь |
1 | 1 | 1 |
2 | 4 | 8 |
3 | 9 | 27 |
4 | 16 | 64 |
5 | 25 | 125 |
6 | 36 | 216 |
7 | 49 | 343 |
8 | 64 | 512 |
9 | 81 | 279 |
10 | 100 | 1000 |
Свойства степеней
Что же характерно для такой математической функции? Рассмотрим базовые свойства.
Учеными установлено следующие признаки, характерные для всех степеней:
- an * am = (a)(n+m),
- an : am = (a)(n-m),
- (ab ) m=(a)(b*m).
Проверим на примерах:
- 23 * 22 = 8 * 4 = 32. С другой стороны 25 = 2 * 2 * 2 * 2 * 2 =32.
Аналогично:
- 23 : 22 = 8 / 4 =2. Иначе 23-2 = 21 =2.
- (23)2 = 82 = 64. А если по-другому? 26 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.
Как видим, правила работают.
А как же быть со сложением и вычитанием? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.
Посмотрим на примерах:
- 33 + 24 = 27 + 16 = 43,
- 52 – 32 = 25 – 9 = 16. Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 3)2 = 22 = 4.
- А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3)3 = 83 = 512.
Как производить вычисления в более сложных случаях? Порядок тот же:
- при наличии скобок – начинать нужно с них,
- затем возведение в степень,
- потом выполнять действия умножения, деления,
- после сложение, вычитание.
Есть специфические свойства, характерные не для всех степеней:
- Корень n-ой степени из числа a в степени m запишется в виде: am/n.
- При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
- При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b)n = an * bn.
- При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
- Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
- Любое число в степени 0 = 1, а в степ. 1 = самому себе.
Степень с натуральным показателем
Под ней понимают степень с показателями, равными целым числам.
Что нужно запомнить:
- A0 = 1, 10 = 1, 20 = 1, 3.150 = 1, (-4)0 = 1… и т. д.
- A1 = A, 11 = 1, 21 = 2, 31 = 3 … и т. д.
Кроме того, если (-a)2n+2, n=0, 1, 2…то результат будет со знаком «+». Если отрицательное число возводится в нечетную степень, то наоборот. Общие свойства, да и все специфические признаки, описанные выше, также характерны для них.
Источник: https://rgiufa.ru/matematika-fizika-himiya/kakie-vozmozhny-dejstviya-so-stepenyami.html
Сложение и вычитание степеней ⬅️
В учебниках по математике можно встретить такое определение:
«Степенью n числа а является произведение множителей величиной а n-раз подряд»
где
a — основание степени
n — показатель степени
Соответственно, an= a·a·a·a…·a
Читается такое выражение, как a в степени n.
Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить данное число (основание степени) на само себя. А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например число 2, то решается она довольно просто:
2 — основание степени
3 — показатель степени
Действия, конечно, можно выполнять и на калькуляторе — вот несколько подходящих:
Таблица степеней
Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).
Число | Вторая степень | Третья степень |
1 | 1 | 1 |
2 | 4 | 8 |
3 | 9 | 27 |
4 | 16 | 64 |
5 | 25 | 125 |
6 | 36 | 216 |
7 | 49 | 343 |
8 | 64 | 512 |
9 | 81 | 729 |
10 | 100 | 1000 |
Свойства степеней: когда складывать, а когда вычитать
Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук — давайте их рассмотрим.
Свойство 1: произведение степеней
При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:
a — основание степени
m, n — показатели степени, любые натуральные числа.
Свойство 2: частное степеней
Когда мы делим степени с одинаковыми основаниями, то основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.
a — любое число, не равное нулю
m, n — любые натуральные числа такие, что m > n
Свойство 3: возведение степени в квадрат
Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.
a — основание степени (не равное нулю)
m, n — показатели степени, натуральное число
Свойство 4: степень возведения
При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.
a, b — основание степени (не равное нулю)
n — показатели степени, натуральное число
Свойство 5: степень частного
Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0,
n — показатель степени, натуральное число
Сложение и вычитание степеней
Как складывать числа со степенями и как вычитать степени — очень просто. Основной принцип такой: выполняется сначала возведение в степень, а уже потом действия сложения и вычитания. Примеры:
- 23+ 34= 8 + 81= 89
- 63- 33= 216 – 27 = 189
И еще несколько правил:
|
Сложение степеней с разными показателями
В таком случае действуем согласно общему правилу: сначала выполняем возведение в степень каждого числа, затем — производим сложение.
Сложение степеней с разными основаниями
В целом, это ничем не отличается от предыдущего пункта. Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим сложение.
- 34+ 54=81 + 625 = 706
- 14+ 72= 1+ 49 = 50
Как складывать числа с одинаковыми степенями
Точно также, как и в предыдущем примере. Если степени одинаковые, а основания разные, то нельзя сложить основания и затем эту сумму возводить в степень.
Сначала возводим каждое число в степень и затем выполняем сложение.
В уравнениях это будет происходить немного иначе. Если показатель и основание степени одинаковые (тогда это называется переменная, a2, например) — их коэффициенты можно складывать. Коэффициент — это число перед переменной a2.
2, 3, 5 — коэффициенты
a2 — переменная
Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.
Вычитание степеней с одинаковым основанием
Здесь принцип тот же, что и со сложением: возводим в степень числа и только потом вычитаем их.
Вычитание степеней с разными основаниями
Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем – производим вычитание.
- 54- 44= 625 – 256 = 369
- 74- 32= 2401 – 9 = 2392
Вычитание чисел с одинаковыми степенями
Все точно также, как и со сложением. Если степени одинаковые, а основания разные, то нельзя вычесть основания и затем эту разницу возводить в степень. Сначала возводим каждое число в степень и затем выполняем вычитание.
И та же история с коэффициентами: если показатель степени и основание степени одинаковые (тогда это называется переменная, a2) — их коэффициенты можно вычитать. Коэффициент — это число перед переменной a2.
6, 3, 2 — коэффициенты
a2 — переменная
Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.
Подготовиться к сложной контрольной ребенку помогут в детской онлайн-школе Skysmart. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. Запишите вашего ребенка на бесплатный вводный урок математики и начните заниматься ей с удовольствием уже завтра.
Источник: https://skysmart.ru/articles/mathematic/slozhenie-i-vychitanie-stepenej
Сложение, вычитание, умножение, и деление степеней
Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.
Так, сумма a3 и b2 есть a3 + b2.
Сумма a3 – bn и h5 -d4 есть a3 – bn + h5 – d4.
Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.
Так, сумма 2a2 и 3a2 равна 5a2.
Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.
Но степени различных переменных и различные степениодинаковых переменных, должны слагаться их сложением с их знаками.
Так, сумма a2 и a3 есть сумма a2 + a3.
Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.
Сумма a3bn и 3a5b6 есть a3bn + 3a5b6.
Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.
Из | 2a4 | 3h2b6 | 5(a – h)6 |
Вычитаем | -6a4 | 4h2b6 | 2(a – h)6 |
Результат | 8a4 | -h2b6 | 3(a – h)6 |
Или:
2a4 – (-6a4) = 8a4
3h2b6 – 4h2b6 = -h2b6
5(a – h)6 – 2(a – h)6 = 3(a – h)6
Умножение степеней
Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.
Так, результат умножения a3 на b2 равен a3b2 или aaabb.
Первый множитель | x-3 | 3a6y2 | a2b3y2 |
Второй множитель | am | -2x | a3b2y |
Результат | amx-3 | -6a6xy2 | a2b3y2a3b2y |
Или:
x-3 ⋅ am = amx-3
3a6y2 ⋅ (-2x) = -6a6xy2
a2b3y2 ⋅ a3b2y = a2b3y2a3b2y
Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a5b5y3.
Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат – это число (переменная) со степенью, равной сумме степеней слагаемых.
Так, a2.a3 = aa.aaa = aaaaa = a5.
Здесь 5 – это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.
Так, an.am = am+n.
Для an, a берётся как множитель столько раз, сколько равна степень n;
И am, берётся как множитель столько раз, сколько равна степень m;
Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.Так, a2.a6 = a2+6 = a8. И x3.x2.x = x3+2+1 = x6.
Первый множитель | 4an | b2y3 | (b + h – y)n |
Второй множитель | 2an | b4y | (b + h – y) |
Результат | 8a2n | b6y4 | (b + h – y)n+1 |
Или:
4an ⋅ 2an = 8a2n
b2y3 ⋅ b4y = b6y4
(b + h – y)n ⋅ (b + h – y) = (b + h – y)n+1
Умножьте (x3 + x2y + xy2 + y3) ⋅ (x – y).
Ответ: x4 – y4.
Умножьте (x3 + x – 5) ⋅ (2×3 + x + 1).
Это правило справедливо и для чисел, показатели степени которых – отрицательные.
1. Так, a-2.a-3 = a-5. Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.
2. y-n.y-m = y-n-m.
3. a-n.am = am-n.
Если a + b умножаются на a – b, результат будет равен a2 – b2: то есть
Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.
Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.
Так, (a – y).(a + y) = a2 – y2.
(a2 – y2)⋅(a2 + y2) = a4 – y4.
(a4 – y4)⋅(a4 + y4) = a8 – y8.
Деление степеней
Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.
Таким образом a3b2 делённое на b2, равно a3.
Делимое | 9a3y4 | a2b + 3a2 | d⋅(a – h + y)3 |
Делитель | -3a3 | a2 | (a – h + y)3 |
Результат | -3y4 | b + 3 | d |
Или:$\frac{9a3y4}{-3a3} = -3y4$$\frac{a2b + 3a2}{a2} = \frac{a2(b+3)}{a2} = b + 3$
$\frac{d\cdot (a – h + y)3}{(a – h + y)3} = d$
Запись a5, делённого на a3, выглядит как $\frac{a5}{a3}$. Но это равно a2. В ряде чисел
a+4, a+3, a+2, a+1, a0, a-1, a-2, a-3, a-4.
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.
При делении степеней с одинаковым основанием их показатели вычитаются..
Так, y3:y2 = y3-2 = y1. То есть, $\frac{yyy}{yy} = y$.
И an+1:a = an+1-1 = an. То есть $\frac{aan}{a} = an$.
Делимое | y2m | 8an+m | 12(b + y)n |
Делитель | ym | 4am | 3(b + y)3 |
Результат | ym | 2an | 4(b +y)n-3 |
Или:
y2m : ym = ym
8an+m : 4am = 2an
12(b + y)n : 3(b + y)3 = 4(b +y)n-3
Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a-5 на a-3, равен a-2.
Также, $\frac{1}{aaaaa} : \frac{1}{aaa} = \frac{1}{aaaaa}.\frac{aaa}{1} = \frac{aaa}{aaaaa} = \frac{1}{aa}$.
h2:h-1 = h2+1 = h3 или $h2:\frac{1}{h} = h2.\frac{h}{1} = h3$
Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.
Примеры решения примеров с дробями, содержащими числа со степенями
1. Уменьшите показатели степеней в $\frac{5a4}{3a2}$ Ответ: $\frac{5a2}{3}$.
2. Уменьшите показатели степеней в $\frac{6×6}{3×5}$. Ответ: $\frac{2x}{1}$ или 2x.
3. Уменьшите показатели степеней a2/a3 и a-3/a-4 и приведите к общему знаменателю.
a2.a-4 есть a-2 первый числитель.
a3.a-3 есть a0 = 1, второй числитель.
a3.a-4 есть a-1, общий числитель.
После упрощения: a-2/a-1 и 1/a-1.
4. Уменьшите показатели степеней 2a4/5a3 и 2/a4 и приведите к общему знаменателю.
Ответ: 2a3/5a7 и 5a5/5a7 или 2a3/5a2 и 5/5a2.
5. Умножьте (a3 + b)/b4 на (a – b)/3.
6. Умножьте (a5 + 1)/x2 на (b2 – 1)/(x + a).
7. Умножьте b4/a-2 на h-3/x и an/y-3.
8. Разделите a4/y3 на a3/y2. Ответ: a/y.
9. Разделите (h3 – 1)/d4 на (dn + 1)/h.
Источник: https://www.math10.com/ru/algebra/slogenie-vichitanie-umnozhenie-delenie-stepeney.html